
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  v e c  o m m  o n s .  o r  g / l i c e n s e s / b y / 4 . 0 /.

Papadam et al. Human Genomics           (2025) 19:34 
https://doi.org/10.1186/s40246-025-00743-8

Human Genomics

†Anastasios Papadam and Mihail Mihov contributed equally to this 
work.

*Correspondence:
Felix Grassmann
felix.grassmann@hmu-potsdam.de

Full list of author information is available at the end of the article

Abstract
Background Mitochondria are small organelles inside our cells crucial for producing energy and heat, cell signaling, 
production and degradation of important molecules, as well as cell death. The number of mitochondria in each cell 
is a marker for mitochondrial function, which generally declines with increasing age. However, we found that there is 
also a considerable seasonal variation of mitochondrial abundance, which warrants further research.

Methods We leveraged data from individuals participating in the UK Biobank study and computed their 
mitochondrial abundance from Exome sequencing reads mapping to the mitochondrial genome. The seasonal effect 
was modelled as a sine-cosine function across the year and changes in amplitude, acrophase and displacement of 
mitochondrial abundance due to various demographic, lifestyle, genetic, proteomic, and metabolomic markers were 
investigated with multivariate regression.

Results We found that mitochondrial DNA (mtDNA) abundance was higher in winter than in summer. This difference 
is related to advanced age, a higher BMI and smoking behavior which resulted in a reduced amplitude of mtDNA 
abundance. A higher education reduced the acrophase (i.e., shifted the distribution to earlier in the year) and a 
higher BMI and lack of physical activity led to a later acrophase. Generally, increased immune cell count resulted in 
lower amplitude, and an increased platelet and lymphocyte count was found to increase the acrophase. Importantly, 
a reduced seasonal amplitude was associated with increased risk for cardiovascular, digestive, genitourinary, and 
respiratory diseases as well as all-cause mortality. Most of the metabolomic and proteomic markers were associated 
with mtDNA displacement (i.e., increase of the baseline level) but not acrophase or amplitude. Similarly, we found 
that there are multiple genetic variants influencing displacement, but none reached genome-wide significance when 
investigating acrophase or amplitude.

Conclusion Seasonal variation of mtDNA abundance is influenced by environmental, lifestyle and immune 
parameters. Differences in the seasonal oscillation of mitochondrial abundance could potentially explain 
discrepancies of previous associations results and might be useful to improve future risk prediction.
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Introduction
Mitochondria, in addition to generating energy through 
oxidative processes, are involved in heat production, iron 
storage, apoptosis, intra- and extra-cellular cell signaling, 
biosynthesis and degradation of important metabolites 
as well as processing of therapeutic agents. Depend-
ing on the tissue, cells host a dynamic range of multiple 
mitochondria which in turn contain multiple copies of 
a tiny circular genome (~ 16,569 base pairs). The human 
mitochondrial proteome consists of more than 1,100 pro-
teins, of which only 13 are encoded in the mitochondrial 
genome [1]. In contemporary human populations, several 
haplogroups are defined by ancestral and stable muta-
tions in the MT genome. Those haplogroups are derived 
from adaptation to different geographic areas under dis-
tinctive selection pressure [2] and may also influence 
the abundance of mitochondrial DNA (mtDNA) [3–5], 
although there is conflicting evidence [6, 7]. Notably, 
different haplogroups have been reported to be associ-
ated with diseases as well as longevity [8, 9] and as such 
contribute to phenotypic variety within human popula-
tions. However, haplogroups do not appear to influence 
mtDNA abundance directly [10] when accounting for 
known confounding factors. Mitochondria rely on self-
replication and are thus prone to cellular stress in aging 
and diseases. Hence, mitochondrial dysfunction and a 
reduction in its biogenesis (and thus a reduction in the 
amount/abundance of mtDNA) are hallmarks of aging 
[11] and has been associated with most aging-related 
diseases [12–14] as well as immunological processes 
[15]. To quantify the amount of mtDNA as a marker of 
mitochondrial abundance and thus function and health, 
several methods have been proposed such as quantita-
tive real time PCR (qPCR), digital droplet PCR (ddPCR), 
high-throughput genotyping arrays or using the sequenc-
ing depth of reads aligned to the mitochondrial genome 
from exome or whole genome sequencing (Fig.  1A). 
Generally, qPCR, ddPCR and next generation sequenc-
ing approaches result in the most accurate estimation of 
mtDNA content in circulating blood cells.

While the amount of mtDNA and thus the number of 
mitochondria in blood cells is slightly stable across an 
individual’s lifetime (temporal intraclass variation rang-
ing from 38% to 60%) [16, 17], there are considerable 
differences between individuals, which potentially is an 
important marker for health or disease. Thus, it is crucial 
to identify further markers influencing mitochondrial 
abundance, particularly in light of conflicting association 
results in previous reports regarding the role of mito-
chondrial DNA abundance in blood on disease risk and 
outcomes such as survival or disease progression [18–24]. 

This was often attributed to the limited effect of mtDNA 
abundance in blood on the diseases or to the method of 
quantification and/or normalization. Nevertheless, we 
argue that a different mechanism could be responsible for 
the lack of associations or conflicting results: We found 
that the amount of mitochondrial DNA changes drasti-
cally across the year, a phenomenon previously observed 
in hibernating mammals [25–27]. The seasonal pattern 
can be approximated according to a sine wave and thus 
further investigated. There are three main parameters of 
the sine wave that can be modelled in regression mod-
els (Fig. 1B): First, displacement is a vertical shift of the 
wave and corresponds to marginal effects observed in the 
regression model. This parameter corresponds to overall 
mitochondrial DNA abundance as ascertained in previ-
ous studies, while adjusting for the presence of the sea-
sonal effect. Second, we can investigate changes in the 
amplitude of the sine wave, which results in an increased 
peak or decreased trough (low-point). Finally, changes in 
the acrophase mean that the whole sine wave is shifted 
horizontally, thus the peak and trough of the wave are 
reached earlier or later in the year. To understand the 
impact of individual demographic, lifestyle, metabolomic 
and proteomic markers as well as blood cell counts on 
those parameters, we studied a large collection of indi-
viduals recruited as part of the UK Biobank.

Methods
Study population
The current study was conducted using the UK Biobank, 
which is a prospective cohort of over 500,000 individuals 
with available genotyping data as well as a rich collection 
of questionnaire and biomarker data. The genotyping 
chip UK Biobank Axiom array was used to obtain the 
genetic information of the UK Biobank participants, 
which includes 784,256 variants [28]. We included all 
consenting individuals and removed non-European sam-
ples, samples failing genotyping quality control, samples 
without exome sequencing data available, as well as those 
having sex chromosomes aneuploidies, resulting in a final 
dataset of 385,667 samples. An overview of the used sam-
ple is found in Table 1.

Ascertainment of environmental, lifestyle and 
immunological factors
BMI was ascertained at the recruitment center at the 
time of the baseline exam and coded as a linear vari-
able. Missing BMI values (2% missingness) were imputed 
to the median to improve power. We used self-reported 
questionnaire data to establish variables for smoking 
status (ever smoked vs. never smoked or missing, 0.4% 

Keywords Mitochondria, Season, Genomics, Metabolomics, Transcriptomics



Page 3 of 16Papadam et al. Human Genomics           (2025) 19:34 

missingness), pack-years (in years smoked at least one 
pack per day), alcohol consumption (more than three 
drinks a week vs. less or missing, 3.8% missingness), lack 
of physical activity (less than moderate/vigorous/walking 
recommendation vs. more or missing, 19.9% missingness) 
and education (university degree vs. none or missing, 
18.9% missingness). For never-smokers, we set pack-
years to 0 and imputed the remaining to the median of 
the respective smoking group (i.e., past or current smok-
ers, overall missingness: 15.5%). In addition to those fac-
tors, we included markers related to white and red blood 
cell counts (field 100081), blood chemistry (field 17518) 
and markers measured in urine (field 100083). The frailty 
index was computed as previously described [29]. Briefly, 
the total number of self-reported disease and ailment was 
ascertained from questionnaire and normalized to the 
total number of possible answers, resulting a frailty index 
representing the percentage of self-reported ailments. To 
compute the estimated glomerular filtration rate (eGFR), 
we used the CKD-EPI creatinine equation [30]. First, the 
molar creatinine levels obtained from the UK Biobank 
(field 30700) were converted to mg/dl and then used in 
the equation separately for males and females. Missing 
values in the eGFR were imputed to the median (6.5% 
missingness).

NMR metabolomics
We used data from the initial release of the NMR metab-
olomics (field 220) to assess their association with mito-
chondrial seasonal variation. Values retrieved for all data 
fields in category 220 were processed with the ukbnmr 
package [31] in R. Briefly, the decoded data was loaded 
into R and the remove_technical_variation was used to 
remove technical variation due to shipment plates, time 
between sample preparation and sample measurement, 
and analysis spectrometer. The resulting values were log2 
transformed and then scaled to have a mean of 0 and a 
standard deviation of 1 for use in the regression analyses. 
Association results were plotted as a mirrored manhattan 
plot using ggplot2 [32].

Proteomic analyses
Relative abundance measures of 2923 proteins in plasma 
were retrieved for around 50,000 UKB participants 
from data field 1838. The data was transformed to long 
format with the dplyr package in R and missing values 
were imputed with the imputePCA function from the 
missMDA package (mean missingness: 10,3%, S.D. 7.4%). 
The abundance of the proteins is given as NPX values 
(Normalized Protein eXpression), which is in log2 scale. 
The NPX values were used as exposure in the association 
testing and the resulting P-values are plotted in a man-
hattan plot.

MtDNA abundance quantification
The amount of mtDNA relative to the autosomal DNA 
was quantified using the read depths obtained from 
exome sequencing reads mapped to the mitochondrial 
and autosomal genome. Importantly, the exome capture 
used by the UK Biobank does not enrich for mitochon-
drial sequences, thus the obtained coverage (on average 
of 0.66X or roughly 11,000 reads in total) of the mito-
chondrial genome is due to unspecific fragments bound 
to the capture beads. This allows for an unbiased quanti-
fication of mtDNA abundance, which would potentially 
be influenced by saturation effects of capture probes and 
capture efficiency [33]. However, the coverage is too low 
to compute haplogroups from the reads, therefore we 
computed the haplogroups from the microarray data 
with haplogrep [34], as previously described [35]. Next, 
we used mosdepth [36] to calculate the coverage of the 
mitochondrial genome in each individual and divided 
that number by the total number of reads mapped to the 
genome. Individuals with an mtDNA abundance larger 
or smaller than 4 times the interquartile range from the 
median were excluded from the analysis (total number 
of excluded individuals: 9650). The normalized mtDNA 
abundance ratio was coded as a linear factor and used as 
the main outcome or exposure in this study.

Disease ascertainment from hospital episode spell data
In order to conduct a phenome-wide association 
study, we extracted all diseases diagnosed (as ICD9 or 
ICD10 codes) from the hospital episode spell data and 
mapped those codes to phecodes with the PheWAS 
package [37] implemented in R. The analyses were 
restricted to incident diseases (i.e., diseases occurring 
after recruitment), and prevalent cases were removed 
from the respective disease by setting those patients 
to missing. We grouped diseases into their major dis-
ease groups according to the organ or system affected 
by the disease: Circulatory, digestive, endocrine, geni-
tourinary musculoskeletal, neurological, and respi-
ratory system as well as neoplasms, mental disorders 
and autoimmune diseases. We also computed a pheno-
type that included individuals with any recorded dis-
ease (out of the major disease groups) and those with 
multiple diseases. Finally, we conducted a PheWAS 
for all diseases occurring at least in 500 individuals 
during follow-up, adjusted for the above-mentioned 
covariates.

Genome- and transcriptome-wide analyses (GWAS 
and TWAS)
To assess the role of inherited genetics in governing 
the displacement, amplitude and acrophase of sea-
sonal mtDNA patterns, we used the TOPmed imputed 
genetic data available for all UKB participants, which 
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Fig. 1 (See legend on next page.)
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passed quality control (see above). We removed vari-
ants deviating from Hardy-Weinberg-Equilibrium 
(P < 5*10− 08), imputation quality < 0.4, a minor allele 
frequency below 5% and those missing more than 10% 
of their genotypes. The resulting summary statistics 
(one for displacement, amplitude and acrophase) were 
then used to compute the heritability of the factor 
using LD Score Regression [38] with standard settings. 
Similarly, we used the summary statistics to perform 
a transcriptome-wide association study with TWAS-
fusion [39] across whole blood samples from GTEx 
v6, NTR (Netherlands Twin Registry) and YFS (Young 
Finns Study). Results were plotted as mirrored man-
hattan plots using ggplot2. We also compiled qq-plots 
for each GWAS with the qq function from the qqman 
package in R [40].

Seasonal analyses
The main factor we wanted to investigate in this study 
was the seasonal patterns in mitochondrial abundance. 
Generally, the seasonal pattern seems to follow a cosine 
wave function across one year. Thus, we modelled several 
aspects of that curve. The sine component of season wave 
(SINW) was computed fromundefined

 
SINW = sin

(
2 ∗ π ∗ (month − 1)

12

)

where month was the numeric number of the respective 
month of recruitment of each individual, starting with 
January as 1 and December as 12. sin() is the sine func-
tion implement in R. Similarly, the cosine part (COSW) 
was computed as

 
COSW = cos

(
2 ∗ π ∗ (month − 1)

12

)

where cos is the cosine function. Both the sine and cosine 
component were included in a linear regression model 
with the mitochondrial abundance as the outcome and 
sine/cosine values as exposures as well as additional fac-
tors for adjustment (see statistical analyses for details). 
Those two functions effectively capture the sinusoid part 
of the seasonal pattern and can then be transformed to 
represent the amplitude and acrophase of the pattern. 

Briefly, we extended the approach from the cosinor pack-
age in R to allow the computation of amplitude and acro-
phase as well as their standard errors also from linear 
variables [41]. The estimate for the amplitude was com-
puted as

 Amplitude =
√ (

SINW 2 + COSW 2)

And the acrophase estimate was computed as:

 
Acrophase = atan

(
SINW

COSW

)

where atan is the arctangent (inverse tangent). To com-
pute the standard errors for those estimates, the same 
transformation cannot be easily applied to the standard 
errors for SINW and COSW. Here, we used the delta 
method to approximate the standard errors for the esti-
mate from the regression model using a first-order Tay-
lor approximation. Dividing the estimate by the standard 
error results in a T-Score of each association, which 
can be used to compute the 95% confidence intervals 
of the estimate as well as a P-value to assess statistical 
significance.

The above approach allows us to quantify the sinusoid 
part in the seasonal pattern depending on the month of 
recruitment. However, to assess whether this pattern 
is influenced by other factors such as lifestyle markers 
(Fig. 1B) requires one additional step. Here, we included 
an interaction term between the investigated marker and 
the SINW and COSW variable:

 
y = β 0 + β 1M + β 2COSW + β 3SINW +
β 4M ∗ COSW + β 5M ∗ SINW + . . . + β iCi

Where y is the outcome (mtDNA abundance), M donates 
the marker values, β 0 is the intercept and β 1 − β 5 are 
the slopes/beta values obtained in the regression analysis. 
Ci are additional covariates in the model (such recruit-
ment center, genotyping principal components, hour and 
year of recruitment), with the corresponding slopes ( β i

). SINW and COSW are the sine and cosine components, 
as shown above. The change in amplitude and acro-
phase (either due to the absence/presence of the marker 
or per unit of the marker) was then extracted from the 

(See figure on previous page.)
Fig. 1 Overview of the methodology used in this study. A: The amount of mitochondrial DNA in circulating blood cells was determined from the Exome 
sequencing reads mapping to the autosome and the mitochondria. Less mitochondrial DNA (mtDNA) abundance results in fewer MT specific reads 
compared to autosomal reads. B: Environmental, lifestyle, genetic or metabolomic markers can influence three aspects of the seasonal pattern in mtDNA 
abundance: A change in amplitude would increase the difference between the minimum and maximum value observed across each year. In contrast, 
markers influencing the acrophase would result in the whole seasonal pattern shifted by a certain amount of time. Displacement describes the effect that 
the baseline level is shifted while not influencing the overall cosine pattern. This is equivalent to looking for markers that influence overall mtDNA levels, 
as was done in previous studies. C: We used linear regression models to investigate the effects of markers on amplitude or acrophase. In case a marker 
reduces the amplitude, the interaction term (grey) in the regression model would be negative and quantifies the difference between the amplitude 
observed with (orange) and without the marker present (blue)
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interaction term estimate of the regression model ( β 4 
and β 5, Fig. 1C) as outlined above and the correspond-
ing standard errors were retrieved with a first-order Tay-
lor approximation. Importantly, the marginal effect of 
the marker ( β 1 in the equation above) corresponds to 
the displacement of the sinusoid curve, i.e., its vertical 
shift and thus the overall change in mtDNA abundance 
accounting for the seasonal pattern. Using β 2 and β 3, 
it is possible to compute the overall amplitude and acro-
phase of mtDNA across the year, as outlined above.

Statistical analyses
The association of environmental, lifestyle, immune 
and red blood cell marker were conducted with linear 
regression with the mitochondrial abundance quanti-
fied from exome sequencing reads as the outcome. For 
each marker, we included an interaction term between 
that marker and the SINW and COSW variable as note 
above (see Fig. 1C). Generally, in addition to SINW and 
COSW, all models were adjusted for age, sex, baseline 
BMI, smoking status, education, lack of physical activ-
ity, risky alcohol consumption, Vitamin D levels in blood, 
the hour and year of blood draw, recruitment center, the 
first ten principal components of ancestry computed 
from genotyping data, white blood cell and red blood cell 
count. In order to analyze the impact of blood cell counts 
on mtDNA abundance seasonal variation and to account 
for correlation between the markers, we additionally 
included all investigated blood cell markers in the same 
model but only computed the interaction with one of 
the markers at a time. Next, we computed the change in 
amplitude and acrophase from the resulting slopes of the 
interaction term. The effect size of the resulting ampli-
tude was normalized to the maximum amplitude (i.e., 
divided by 0.091 standard deviations), thus representing 
the change in the amplitude in percent. Acrophase repre-
sents the change in the acrophase in percent of a month 

and was not further transformed. The results of the cor-
relation analyses were visualized with a correlation plot 
using the corrplot function from the corrplot package, 
implemented in R. In the correlation plot, we deemed 
correlations with an uncorrected P-value of less than 0.05 
as statistically significant.

The phenome-wide association study was per-
formed on incident major diseases as retrieved from the 
phecodes computed by the PheWAS package. The disease 
status was the main exposure, and we estimated whether 
individuals that develop a certain disease have a differ-
ent amplitude, acrophase or displacement of mtDNA 
across the seasons. The analyses were adjusted for the 
same variables as above and additionally for lymphocyte 
and neutrophil count as well as hematocrit. The results 
were then visualized as a forest plot using ggplot2. For the 
PheWAS including all individual phecodes with at least 
500 observations (640 in total), we accounted for mul-
tiple testing with a Bonferroni correction for 1920 tests 
(i.e., 3 times 640 diseases) and considered adjusted P-val-
ues below 0.05 as statistically significant.

Similarly, the laboratory marker wide association scan 
(labWAS) and the proteome-wide association study 
(PWAS) were conducted with linear regression. Of note, 
the labWAS was adjusted for the same variables above 
and also adjusted for total cholesterol to reduce the 
impact of total cholesterol on the results, which can skew 
metabolomic results in case the outcome has an associa-
tion with it (which we found in a previous study [35]). 
Similarly, to account for residual confounding of techni-
cal artifacts, the proteomic analyses were adjusted for the 
factors mentioned above and, additionally for the first 
three principal components computed from the protein 
data. In these two analyses, we considered P-values as 
significant if they are smaller than 0.0001 (i.e., 0.05/379 
laboratory markers) or smaller than 0.000015 (i.e., 
0.05/2923 protein markers) in the labWAS and PWAS, 
respectively.

In the genome-wide association study, we also mod-
elled mitochondrial abundance as the outcome and 
extracted the change in amplitude and acrophase from 
the interaction term between the genetic variant and the 
SINW and COSW variables. The analyses were adjusted 
for as stated above and, additionally for lymphocyte and 
neutrophil count as well as hematocrit. We considered 
P-values for association below 5.00 × 10− 08 as genome-
wide significant and associations below 5.00 × 10− 06 as 
transcriptome-wide significant.

The survival analysis was conducted with a linear 
regression model with mitochondrial abundance as the 
outcome. We assessed whether the censor variable (death 
from any cause = 1, end of follow-up or lost to follow-up 
= 0) showed a significant interaction with the amplitude 
or acrophase as outlined above. The model was adjusted 

Table 1 Study population
Variable Females Males All
Number of individuals 208,269 177,398 385,667
Mean age at recruitment (S.D) 
[years]

56.72 (7.92) 57.15 (8.09) 56.92 
(8.00)

Mean body mass index (S.D) 
[kg/m2]

27.05 (5.06) 27.83 (4.17) 27.41 
(4.69)

Packyears (S.D) [P/dY] 6.39 (12.87) 11.01 (18.78) 8.48 
(15.99)

Ever smoked [%] 40.85 51.25 45.64
Risky alcohol consumption [%] 41.91 56.76 48.74
Lack of physical activity [%] 13.98 15.63 14.74
University degree [%] 29.27 32.30 30.66
Mean Frailty Index (S.D) 12.04 (6.73) 11.47 (6.64) 11.78 

(6.70)
Mean eGFR [mL/min/1.73m2] 
(S.D)

90.89 (13.66) 89.73 (12.80) 90.36 
(13.28)
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for the same variables as above and, additionally, for the 
frailty index, length of follow-up, hematocrit, lympho-
cyte and neutrophil count.

Results
The summary characteristics of study participants by 
sex status are listed in Table 1. We computed the abun-
dance of mitochondrial DNA (mtDNA) relative to auto-
somal DNA from the exome sequencing reads of all 
participants.

Mitochondrial DNA abundance is influenced by season
In this study, we found that the mtDNA showed a sea-
sonal pattern (Fig.  1), with peak (crest) abundance 
reached in winter around winter solstice and the trough 
(low point) observed in summer (around summer sol-
stice, i.e., 6.7 months into the year). We modelled the 
change in abundance as a sine (sinusoid) wave and 
obtained an amplitude of 0.092 standard deviations (95% 
confidence interval: 0.085; 0.097, P-value = 2.51 × 10− 189) 
and an acrophase of -0.14 (95% CI: -0.078; -0.21, 
P-value = 1.80 × 10− 05), corresponding to roughly one 
week before new year’s eve. The linear regression model 
was adjusted for lifestyle factors influencing mtDNA 
abundance. Additional adjustment for blood cell count, 
Vitamin D levels, haplogroup (estimated from genotyp-
ing arrays), recruitment center and hour of blood draw 
did not change the observed amplitude or acrophase. 
Importantly, the size of the amplitude is similar to the 
difference between males and females (0.086 standard 
deviations) or to the decline in mitochondrial abundance 
of around 20 years (0.005 standard deviations per year). 
The amplitude and acrophase explain around 0.4% of 
the variation in the mitochondrial abundance observed 
(Fig. 2).

Lifestyle, demographic, and blood cell markers influencing 
the seasonal pattern
Next, we modelled the sine of the seasonal pattern and 
computed the association between lifestyle, demo-
graphic, and blood cell factors with changes in the ampli-
tude (i.e., the difference between the baseline and the 
maximum value observed across the year), baseline level 
(displacement, equivalent to the overall mtDNA abun-
dance corrected for the seasonal pattern) and phase 
shift (acrophase, i.e., a shift of the wave earlier or later 
in the year). We found that many factors known to influ-
ence mtDNA abundance [10, 35, 42] are still associated 
with displacement, thus increasing, or decreasing the 
baseline level of mtDNA abundance (Fig.  3). We found 
that increased age, BMI and smoking behavior both 
decreased the observed amplitude, indicating that those 
factors reduce the natural seasonal variation observed. 
In contrast, a higher amplitude in mitochondrial abun-
dance was associated with increased eGFR values, imply-
ing better kidney health with stronger seasonal changes. 
In addition, a participant with university degree had a 
decreased acrophase (i.e., earlier peak), while a higher 
BMI and lack of physical activity resulted in a later peak. 
In addition, increased white blood cell count (particularly 
monocytes, neutrophils and eosinophiles) was correlated 
to a reduced amplitude. An elevated platelet and lympho-
cyte count was correlated to increased acrophase (i.e., 
later peak in the year) and reticulocytes were associated 
with an earlier peak.

Diseases and mortality associated with seasonal variations
In the next step, we aimed to understand whether an 
individual’s risk to develop a disease or overall mortality 
could be influenced by seasonal fluctuations in mtDNA 
abundance. To investigate this, we extracted incident dis-
eases from hospital episode spell data and asked whether 
individuals that develop a certain disease have an altered 
amplitude, displacement or acrophase of mitochondrial 
content across the season (Fig. 4). When we investigated 
those effects, we found that patients that developed a car-
diovascular disease had a 16.5% lower amplitude (95%CI: 
6.2%;26.9%, P-value = 0.0018) than those that did not 
develop such a disease. This means that individuals with 
a higher risk for cardiovascular disease should have a less 
pronounced seasonal change with lower values in winter 
and higher in summer. Similarly, a reduced amplitude 
was associated with endocrine diseases (12.9%, 95%CI: 
0.7%;25.1%, P-value = 0.0379), mental disorders (16.5%, 
95%CI: 3.9%;29.1%, P-value = 0.0101) and respiratory dis-
ease (13.7%, 95%CI: 0%;27.5%, P-value = 0.05). Overall, 
individuals with a hospitalization due to any of the inves-
tigated diseases had a 10.0% lower amplitude (95%CI: 
0.7%;19.3%, P-value = 0.0342), while individuals with 
multiple diseases had a 13.1% lower amplitude (95%CI: 

Fig. 2 Seasonal variation of mitochondrial DNA abundance in the UK 
Biobank. The amount of mtDNA in blood cells varies with season in the 
UK Biobank. The average mtDNA abundance in S.D. from the mean (zero) 
is depicted as a dot and the borders of the 95% confidence intervals as 
horizontal bars. Numbers above each estimate indicate the sample size 
in each month. The seasonal effect was observed overall three years of 
recruitment and across all recruitment sites and was virtually unchanged 
when adjusting for most factors known to influence mtDNA abundance
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3.8%;22.5%, P-value = 0.0059). Restricting the analysis to 
the four disease groups which displayed a significantly 
different amplitude, the observed effects were increased, 
as expected (Fig. 4). Generally, higher levels of mitochon-
drial abundance (after account for seasonal effects) were 
associated with higher disease risk, in agreement with a 
recent study [10]. Apart from musculoskeletal, autoim-
mune, and neurological diseases, we found statistically 
significant associations at P < 0.05 for all other diseases as 
well as the combined phenotype for any disease (Fig. 4). 
Importantly, individuals that developed a disease did not 
show a difference in acrophase.

We also conducted a PheWAS for all diseases occurring 
at least 500 times during follow-up (640 diseases in total). 
We found that changes in mtDNA abundance were sig-
nificantly associated with myeloproliferative disease (OR 
per S.D.: 1.46 (95% CI: 1.36;1.57), P-value = 2.2 × 10− 25) 

and chronic airway obstruction (OR per S.D.: 1.05 (95% 
CI: 1.03;1.07), P-value = 1.0 × 10− 5). After accounting for 
multiple testing, no other diseases were associated with 
amplitude, displacement or acrophase.

Finally, we investigated whether the seasonal pattern 
is associated with all-cause mortality. We found that 
individuals which died during the median 7.81 years of 
follow-up (range: 0.01 years – 15.5 years) had a 22.8% 
reduced amplitude (95% CI: 5.6%;39.9%, P-value = 0.0009) 
and no statistically significant difference in the acro-
phase (1.7% of a month, 95% CI: -22.9%;19.5% of a 
month, P-value = 0.87). There was also no significant 
difference observed in the displacement in individu-
als that died compared to those that did not during fol-
low-up (0.11  S.D. from the mean, 95% CI: -0.008;0.24, 
P-value = 0.068).

Fig. 3 Lifestyle, demographic factors, and blood cell count influencing mtDNA seasonal patterns. The size and color of the circles indicate the effect on 
the seasonal pattern of mitochondrial abundance. Blue circles indicate that the marker reduced the respective pattern and red increased it. Amplitude 
designates the effect on the difference between the minimum and maximum values in the seasonal pattern and is given as the fraction of the total ampli-
tude (which is 0.091 standard deviations). Displacement is the vertical shift in the mean value across all seasons (i.e., the marginal effect in the regression 
model) and is given in % of a standard deviation. The change in the time until the peak in the wave is reached is described by the acrophase and is given in 
a fraction of a month. A: Association of lifestyle factors as well as frailty on seasonal patterns. B: Whole blood cell counts associated with seasonal patterns
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Metabolomics and proteomics of seasonal MtDNA 
abundance changes
Building on those results, we next investigated whether 
there was a correlation between metabolomic or pro-
teomic markers and the seasonal pattern. In the labora-
tory wide scan (labWAS, Fig. 5 and Supplementary Table 
1), we found that the observed Z-Scores were highly cor-
related between the three seasonal characteristics. We 
observed that the Z-Scores were negatively correlated 
between amplitude and acrophase (correlation coefficient 
− 0.54), acrophase and displacement (correlation coef-
ficient − 0.63) but positively correlated between ampli-
tude and displacement (correlation coefficient 0.72). This 
indicates that the same markers that influence displace-
ment are potentially also similarly associated with the 
amplitude. Looking at the markers individually, we found 
that many metabolomic markers were statistically signifi-
cantly associated with displacement after correction for 
multiple testing. However, none of the markers were sig-
nificantly associated with a shift in acrophase or change 
in amplitude after Bonferroni correction. Next, we inves-
tigated whether seasonal effects are potentially associated 
with protein measurements (Fig.  6 and Supplementary 
Table 2). Similar to the results from the metabolomics 
approach, most proteins were associated with displace-
ment. Nevertheless, we found four proteins statistically 
significantly associated with amplitude (ARGHEF12, 
GAPDH, BANK1 and LAT4H).

Genomic dissection of MtDNA seasonal effects
To understand the genetic basis of seasonal effects, we 
conducted a genome-wide association study model-
ling the interaction between 6,112,950 common genetic 
markers and the seasonal pattern in mitochondrial abun-
dance. We observed little evidence for residual popula-
tion stratification as the genomic inflation factors were 
1.00, 1.10 and 1.01 for the GWAS related to amplitude, 
displacement and acrophase, respectively (Supplemen-
tary Fig.  1). The pairwise correlation coefficient of the 
Z-Scores observed between the GWAS for amplitude 
and displacement was 0.11, indicating that genetic fac-
tors that increase baseline mtDNA abundance also influ-
ence, on average, amplitude in the same orientation. In 
contrast, we found no correlation between the Z-Scores 
observed for amplitude and acrophase (correlation coef-
ficient = 0.00) and a negative correlation between acro-
phase and displacement (correlation coefficient = -0.086). 
First, we investigated whether our GWAS overlaps with a 
recent GWAS by Gupta et al. [10]. The correlation coeffi-
cient between the betas for displacement observed in our 
study and the GWAS by Gupta et al. was 0.98, indicating 
excellent overlap. Out of 2754 genome-wide significant 
variants from Gupta et al., 1348 were also genome-wide 
significant in our sample and only 16 did not reach sig-
nificance. Those 16 variants did not show a statistically 
significant association with amplitude or acrophase, how-
ever. In total, we found 36 loci associated with displace-
ment (i.e., overall mitochondrial abundance) that reached 
genome-wide significance (Fig.  7 and Supplementary 

Fig. 4 Seasonal variation of mitochondrial abundance associated with incident disease risk. We used linear regression to model the impact of the sine 
wave on incident disease risk in the UK Biobank. We found that the amplitude and displacement but not acrophase were associated with major incident 
disease groups. Any disease indicates any of the investigate disease while multiple diseases denote the development of two or more major disease 
groups. # = all/multiple diseases excluding musculoskeletal and autoimmune diseases and neoplasms. * = P < 0.05, ** = P < 0.01, *** = P < 0.001
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Fig. 6 Proteome-wide association study on seasonal patterns of mitochondrial abundance. The correlation between proteins and seasonal patterns of 
mitochondrial abundance computed with linear regression, adjusted for lifestyle and blood cell markers as well as total cholesterol and the first three 
principal components computed from the protein data. Each dot represents the Z-Score of the effect on the respective aspect of the seasonal patterns. 
Positive values indicate that the protein is associated with increased values in the respective pattern, while negative values indicate the opposite. The 
horizontal dotted lines denote the Z-Scores corresponding to the Bonferroni corrected P-value threshold of 0.000015 (i.e., 0.05/ 2923 markers). Proteins 
with a Z-Score above 6 or below − 10 are shown in Panel B. A: Protein markers associated with mtDNA amplitude (difference between maximum and 
minim value). B: Protein markers Protein markers associated with mtDNA displacement (vertical shift in mtDNA abundance). C: Protein markers associated 
with mtDNA acrophase (horizontal shift across the year)

 

Fig. 5 The association between laboratory markers (labWAS) and seasonal pattern of mitochondrial abundance. The association between metabolomic 
and other blood markers with seasonal mtDNA abundance patterns is shown as a manhattan plot. For each metabolite, we computed a linear regression 
model with mtDNA abundance as the outcome and modelled the interaction between that marker and the seasonal pattern to extract their effect on 
amplitude, acrophase and displacement. The analyses were adjusted for lifestyle and immune markers and additionally for total cholesterol to reduce 
the impact of cholesterol measurement in the results. The horizontal dotted lines denote the Z-Scores corresponding to the Bonferroni corrected P-value 
threshold of 0.0001 (i.e., 0.05/379 markers). Dots represent the effects observed on displacement, X the effects observed on acrophase and the diamond 
the effects on the amplitude
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Table 3). 24 of those loci were identified by Gupta et al. 
with genome-wide significance, while 10 were at least 
nominally significantly associated at P < 0.05. One locus 
(rs58105891 in TMCC2) is novel and did not reveal asso-
ciations in prior GWAS.

However, there were no genome-wide signifi-
cant regions associated with acrophase or ampli-
tude. We found two loci with suggestive evidence 
associated with amplitude (rs4408948 on chromosome 
4, P-value = 1.04 × 10− 07 and rs145637468 on chromo-
some 9, P-value = 3.71 × 10− 07) and one locus associ-
ated with acrophase (rs76900225 on chromosome 8, 
P-value = 1.26 × 10− 07). We estimated the heritability 
of displacement to be 2.1% (95% CI: 1.67%; 2.53%). In 
contrast, we were not able to compute heritability esti-
mates for displacement or acrophase due to the lack of 
genome-wide significant findings. The resulting sum-
mary statistics from each GWAS were used to compute 
a transcriptome-wide association study. While we did 
find 29 genes significantly associated with displacement 
(Fig. 6 and Supplementary Table 4), none remained after 
accounting for multiple testing in the TWAS for ampli-
tude or acrophase.

Discussion
In this study, we aimed to provide insights into the epi-
demiological basis of seasonal mtDNA oscillation. Our 
results indicate that age, BMI, smoking behavior as well 
as white blood cell count reduce the amplitude of the 
seasonal pattern and thus the difference between maxi-
mum and minim values observed across the year. Simi-
larly, BMI, lack of physical activity, a higher education as 
well as platelet, lymphocyte and reticulocyte count influ-
ence the acrophase and therefore shift the whole seasonal 

pattern to earlier or later peaks in the year. However, the 
strongest effects were generally observed for the displace-
ment, i.e., the vertical shift in the sine wave across the 
season, which is equivalent to the overall mtDNA abun-
dance, accounting for the seasonal pattern. This was true 
for the lifestyle, demographic, immune and red blood 
cell counts, the labWAS, the protein-wide, genome-wide, 
and transcriptome-wide association study. Nevertheless, 
we observed that individuals that developed a disease 
or died due to any cause had a significant change in the 
amplitude and not in acrophase or displacement, which 
warrants further investigation.

The observed variation in mtDNA abundance across 
the year was estimated from the reads mapping to the 
mitochondrial genome and normalized by total read 
count. We also saw the same effect when using our pre-
viously established method to estimate mtDNA from 
genotyping arrays [35]. In addition, a recent study using 
whole genome sequencing [10] also reported this effect, 
indicating that it is unlikely to be a technical artifact. 
The observed effect was also stable across all three years 
of recruitment in the UKB and also when adjusting for 
potential batch effects such as WES release tranche, 
recruitment center and year of recruitment. Never-
theless, while we can model the seasonal changes as a 
sine wave, we do not know the consequence of altered 
mtDNA abundance in summer or winter. For instance, an 
individual with higher-than-expected mtDNA abundance 
in winter might also have higher mtDNA abundance in 
summer (i.e., a generally increased mtDNA amount) or 
might have a higher amplitude instead. To study this, 
longitudinal mtDNA measurements would be necessary, 
which are usually not available for most studies since 
genotyping (with arrays or sequencing) is usually only 

Fig. 7 Genome-wide and transcriptome-wide association study results for displacement (overall mtDNA abundance). Top panel (above 0): Genome-
wide association study (GWAS); Manhattan plot of 6,112,950 variants with minor allele frequency greater 1% and their association with displacement. 
Genes closest to the association results are indicated above the association peaks. Bottom panel (below 0): Transcriptome-wide association study (TWAS); 
Genes expression associated with displacement estimated with TWAS-fusion. Genes below Bonferroni corrected P-Value threshold are labelled excluding 
duplicate genes. The blue line denotes genome-wide significance (P < 5.00 × 10− 08, top panel) or transcriptome wide significance (P < 1.00 × 10− 06). In the 
GWAS analysis, the closest genes in annotated while in the TWAS the respective gene is indicated
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performed once per patient. The observed amplitude is 
similar in effect size as the difference observed between 
males and females, thus the total variation across the sea-
son is more than twice that effect. This indicates that the 
seasonal variation is an important factor in governing 
total mtDNA abundance in individuals, which is why we 
performed several analyses to investigate this phenom-
enon. However, our studies are only done with one mea-
surement per person, so the true seasonal effects might 
be more different than the ones we observed here.

Several demographic and lifestyle factors influence 
the seasonal pattern. While most factors influence the 
displacement and thus the vertical shift of the distribu-
tion as was previously found by other studies [10, 35, 42], 
there were fewer associations for amplitude and acro-
phase. Generally, less healthy behavior such as a higher 
BMI and increased pack-years as well as increased age 
seemed to decrease the amplitude of mtDNA abundance 
resulting in lower maximum and higher minimum sea-
sonal values. This observation fits the results obtained 
from the disease associations where individuals that 
developed diseases generally had lower amplitudes than 
individuals that remained healthy. The precise biological 
mechanisms behind the observed disease associations, 
are, however difficult as only few markers were associ-
ated with seasonal patterns such as amplitude and acro-
phase. In this study, we observed that higher white blood 
cell counts also correlated to a reduced amplitude. Previ-
ous studies showed that increased white blood cell count 
increased the risk to develop a cardiovascular disease 
[43]. However, our PheWAS was adjusted for white blood 
cell count as well as BMI and pack-years (which showed 
a similar pattern as white blood cell count) and other risk 
factors for cardiovascular disease. Thus the observed 
association is likely independent of those risk factors and 
unlikely to work through modulation of those risk fac-
tors. Indeed, we observed only minor attenuation of the 
association between classical risk factors and cardiovas-
cular disease when adjusting for mitochondrial abun-
dance or season (data not shown).

Similar to the amplitude, we found that several life-
style and demographic factors influenced acrophase. 
The pattern observed here, however, is less clear. Gener-
ally considered disease risk factors (such as obesity, lack 
of physical activity, and less education) had differential 
effects on acrophase. This might also explain why we 
did not observe an association between acrophase and 
incident diseases. This is also in line with the observa-
tion that an increased frailty index was not associated 
with acrophase. We performed the disease association 
analyses first on major disease groups to increase our 
power since our method relies on computing interaction 
terms between the sine and cosine function of the sea-
sonal pattern. Thus, our power was reduced, resulting in 

few findings investigating all 640 common diseases when 
accounting for multiple testing. Further studies, includ-
ing additional cohorts modelling the seasonal pattern 
would be necessary to identify which specific diseases in 
each disease group are responsible for the observed asso-
ciations. Importantly, changes in the amplitude observed 
at baseline were associated with increased all-cause mor-
tality. This observation is in line with the results obtained 
from the disease associations and points towards mecha-
nisms that could be useful targets for treatment. How-
ever, whether the observed effect on mortality is causal 
remains to be investigated, potentially in a propensity 
matched cohort. In addition, the observed effects should 
also be replicated in an independent cohort to assess 
whether the recruitment strategy could influence the 
observed effects. In addition, replication of our results in 
individuals from different ethnicities as well as popula-
tions living in other climates (such as equatorial regions 
without seasonal variation as well as individuals from the 
southern hemisphere with inverted seasons) is warranted 
to investigate the generalizability of our findings.

While we found that changes in the amplitude of 
mtDNA across the season were a risk factor for cardio-
vascular, endocrine, and respiratory diseases as well as 
mental disorders, we found little molecular markers that 
would explain those associations. Neither the labWAS, 
nor the genomic approach found statistically significant 
markers associated with amplitude or acrophase. Part of 
the explanation could be the reduced power due to the 
requirement to model two interaction terms (one with 
the sine and one with the cosine function) in the associa-
tion testing. In addition, the mtDNA abundance overall 
only has a small heritability, therefore limiting the power 
to identify markers associated with the trait in an inter-
action analysis. Furthermore, there is a large degree of 
interindividual variability, so the association results could 
be confounded by individual variation across the season 
that cannot be accurately modelled without additional 
markers and longitudinal data. Although the strongest 
effects in the proteomic approach were also observed for 
displacement, we found several proteins to be associated 
with mitochondrial amplitude. Those genes are largely 
involved in regulating parts of the adaptive and innate 
immune systems: ARHGEF12 (Rho Guanine Nucleotide 
Exchange Factor 12, also known as LARG, Leukemia-
associated RhoGEF) is a protein involved in the regula-
tion of RhoA GTPAse and is likely involved in immune 
cell function [44]. In addition, several studies found 
association signals near this gene for monocyte count. 
BANK1 (B Cell Scaffold Protein With Ankyrin Repeats 1) 
is a B-cell specific scaffold protein that is likely involved 
in autoimmune diseases [45]. Similarly, we found that 
increased GAPDH levels in plasma resulted in reduced 
mtDNA amplitude. This protein has many functions in 
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the cell such metabolism, adhesion, and, regulation of 
transcription [46] but has also been found elevated in 
plasma in patients with liver cirrhosis [47], Alzheimer’s 
disease [48] and is likely involved in immune cell func-
tion [49]. Likewise, Leukotriene A4 Hydrolase (LTA4H) 
is an enzyme that can degrade proline-glycine-proline 
(PGP), which is a neutrophil attractant. Thus, those pro-
teins might be associated with the amplitude, since we 
also observed that differences in white blood cell counts 
to be similarly affected by changes in the mtDNA ampli-
tude. Importantly, we adjusted for blood cell count in the 
proteomic analyses in order to not confound our analyses 
by those factors. Since we observed the association with 
those immune related proteins anyways, this indicates 
that they likely act independently of blood cell count. 
The precise mechanism behind the observed association 
between mtDNA seasonal amplitude and plasma levels 
of those proteins is, therefore, not easily described and 
requires additional research.

Our results have important implications for future 
research. Previous studies often reported conflicting 
results regarding the association between mtDNA abun-
dance and diseases. While many of those issues can 
be attributed to inadequate adjustment for confound-
ers (see [10]), part of the issue could also be due to sea-
sonal effects, which could confound association analyses. 
While we found several associations with overall mtDNA 
abundance (displacement), most of the diseases were 
also associated with changes in the amplitude. Similarly, 
changes in amplitude were associated with all-cause 
mortality while acrophase and displacement were not. 
Thus, accounting for season and potentially the ampli-
tude would be useful when investigating disease associa-
tions in future studies.

In our analyses, we imputed missing values to the 
median (for BMI, packyears smoked and eGFR) or 
using collinearity in the data (proteomics data). In a 
sensitivity analysis using non-imputed data, we found 
virtually the same results, which was expected as 
the missingness of the data is rather low. The choice 
to perform imputation was to increase our power, 
which was necessary to investigate the interaction 
between markers and seasonal parameter. In addition, 
we excluded individuals with extremely high or low 
mtDNA abundance measurements. In total, 9650 indi-
viduals were excluded due to extreme mtDNA mea-
surements (i.e., more than 4 times the interquartile 
range from the median). Those extreme values could 
be a result of technical issues with the enrichment (i.e. 
low genomic coverage or very high mtDNA coverage 
due to stronger non-specific mtDNA adherence to the 
beads) or due to biological variation. Since those indi-
viduals represent only around 2% of the population 
but have (comparably) extreme mtDNA abundance 

estimates, they could skew the results, particularly if 
they were recruited in a similar season, for instance.

In our analyses, we adjusted for many factors that 
could explain this effect by exhibiting seasonal effects 
(such as blood cell count [50] or vitamin D levels [51]), 
be influences by seasonal effects (such as smoking 
behavior [52], alcohol consumption [53] or exercise) 
as well as technical variables (such as year and hour of 
recruitment, study center and thus latitude of recruit-
ment). Since the seasonal pattern was evident with 
those adjustments, this therefore strongly suggests that 
the seasonal pattern has other causes independent of 
those factors. Recent reports indicate that many blood 
parameters such as red blood cell count also fluctu-
ate in a similar pattern observed here for mtDNA [54, 
55], which could be attributed to seasonal differences 
in atmospheric pressure and thus oxygen supply [56]. 
Thus, the pattern observed for mtDNA abundance 
could be an evolutionary adaptation to the seasonal 
availability of oxygen. However, we did not observe 
that the amplitude of mtDNA abundance influences 
red blood cell parameters and there are mixed effects 
observed for displacement i.e., overall mtDNA abun-
dance. Therefore, the precise role of seasonal effects 
in mtDNA abundance in adaptation and evolution is 
not clear. While such seasonal effects for mitochon-
dria have been observed in hibernating mammals, its 
role in non-hibernating species is unknown. One of 
the important functions of mitochondria is the pro-
duction of heat. Since mitochondria maintain a tem-
perature roughly 15 °C above their environment, their 
precise control could be crucial to maintain adequate 
body temperature throughout the year [57]. Finally, 
the mitochondrial seasonal pattern could be due to 
an adaptation of humans to changing seasons and 
thus changes in the scarcity of food, which could have 
been necessary after the great expansion event. This 
would fit the observation that a higher body mass 
index (i.e., surplus of caloric intake) is correlated to 
a reduced amplitude. However, the results could also 
point towards a different explanation: Maladapta-
tion of the seasonal mtDNA abundance to a modern 
lifestyle could lead to increased weight gain (e.g., a 
higher amplitude could result in a more efficient fat 
storage), thus resulting in a similar association pat-
tern. However, due to limited longitudinal data, we 
can only speculate on the precise mechanisms behind 
the observed associations. The change in mitochon-
drial abundance could also be related to a mechanism 
to recycle mitochondria which have accrued dam-
aging mutations. Previous studies found that highly 
proliferative tissues have a lower heteroplasmy com-
pared to low-turnover tissues [58, 59]. Thus a faster 
turnover of immune cells between seasons could be 
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beneficial to reduce heteroplasmy burden over many 
years. However, since the life-span of cell carrying 
mitochondria in blood is much shorter than a seasonal 
interval (in the range of a few days generally [60]), it 
is much more likely that cells with damaged mito-
chondria are themselves replaced instead of the mito-
chondria within those cells. Therefore, we speculate 
that the mechanism is an adaptation to differences in 
diet, temperature [57], atmospheric pressure [61], or 
light exposure which differs between seasons. Interest-
ingly, the peak and trough of mitochondrial seasonal 
oscillation roughly coincides with winter and summer 
solstice, respectively. This strong tie with exposure to 
overall daylight duration, air pressure or temperature 
[62] could therefore be mechanisms driving changes 
in mitochondrial abundance, even in non-hibernating 
mammals such as humans. While out of scope, we 
would thus hypothesize that a similar trend observed 
here in the UK Biobank should present in humans liv-
ing in the southern hemisphere as well, albeit with 
reverse pattern i.e., the highest mtDNA abundance 
estimates observed in the summer months of the 
northern hemisphere. In contrast, in regions with less 
severe climatic differences between the seasons, the 
mtDNA seasonal pattern should also be attenuated 
with a weaker amplitude.

Taken together our results show that seasonal 
changes in mitochondrial abundance are a risk fac-
tor for multiple major diseases as well as overall mor-
tality in our aging society. The precise control of the 
seasonal pattern is, however, elusive, and likely not 
influenced by common genetics, metabolite levels or 
circulating proteins. Further research is therefore war-
ranted, particularly with longitudinal DNA sampling 
and mtDNA abundance estimation.

Glossary

Displacement Shift in the seasonal pattern of mtDNA 
abundance in a vertical orientation 
(Fig. 1B). This is equivalent to overall 
changes of mtDNA abundance, which 
previous studies investigated.

Acrophase  Shift in the seasonal pattern of 
mtDNA abundance to earlier or later 
peak values (Fig. 1B). In particular, 
factors influencing acrophase influence 
the peaks to occur earlier or later in 
the year.

Amplitude Change in the height of the peak in 
the seasonal pattern (Fig. 1B). Factors 
influencing the amplitude result in 

higher or lower peaks, but the mean of 
the distribution does not necessarily 
change.

Marginal effect In the interaction analysis (Fig. 1C), 
the change in the amplitude and 
acrophase due to certain markers 
is indicated by the effect size of the 
interaction term. In addition to the 
interaction term, the marginal effect of 
the marker can also be retrieved in the 
model. The marginal effect is equiva-
lent to the displacement of the mtDNA 
abundance due to the factor, adjusted 
for the seasonal pattern.
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